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We show that complex mean-value interpolation, a generalization of Lagrange�
Hermite interpolation, may be defined in any domain that is C-convex, whereas the
original definition required ordinary, real convexity. We also show that C-convex
domains are the natural ones in which to perform mean-value interpolation, in
the sense that any Runge domain which admits mean-value interpolation must in
fact be C-convex. Finally, we obtain an integral formula for the error and give
some applications concerning approximation of holomorphic functions. � 1997

Academic Press

1. INTRODUCTION

The simplest instance of mean-value interpolation is ordinary Lagrange�
Hermite interpolation in R: given a sufficiently smooth function f and a
sequence of points p=( p0 , ..., pk), possibly coincident, there is a unique
polynomial Lp f of degree at most k interpolating f at the points p
(including derivatives in the case of multiple points).

In one variable, the general mean-value interpolation operators, Lm
p , can

be defined in terms of the Lagrange�Hermite operator Lp as follows. For
any integer m such that 0�m�k we let D&mf be any function such that
Dm(D&mf )= f. Then

Lm
p f =DmLpD&mf.

This polynomial of degree k&m has the property of matching certain
canonical mean-values of the function f.

These one variable methods were extended to Rn by Goodman [14]
and their extensions are sometimes referred to as the scale of mean-value
interpolations. As special cases there appear the analogues in Rn of
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ordinary Lagrange�Hermite interpolation, originally found by Kergin [18]
and Hakopian [15].

In this paper we turn to Cn and show that, whereas the real mean-value
interpolation operators are confined to functions defined on convex
domains, their complex analogues can be substantially extended. To be
precise, we prove that any C-convex domain gives rise to a unique scale of
mean-value interpolation operators. And we also prove a converse, namely
that any Runge domain which admits mean-value interpolation must in
fact be C-convex. Hence, C-convex domains are the natural ones in which
to perform mean-value interpolation. The special case of complex Kergin
interpolation was treated by Andersson and Passare in [4] and [5]. For
the other cases, no complex results have previously been given.

We also give an integral formula for the error in complex mean-value
interpolation, generalizing a classical formula of Hermite. Using the error
formula, we obtain results about the convergence of mean-value interpolat-
ing polynomials to holomorphic functions. Such convergence theorems
are known for complex Kergin interpolation, but again in the other cases
nothing has previously been proved.

The paper is set out in the following way. Sections 3 and 4 contain some
background material and a discussion of mean-value interpolation in R
and Rn. In Sections 5 and 6 the basic tools for introducing complex mean-
value interpolation are presented. The main results, Theorem 7.3 and
Theorem 7.6, are stated and proven in Section 7. In Section 8 we obtain an
integral formula for the error. This formula is used in Sections 9 and 10 to
approximate holomorphic functions. There is a close connection between
complex convexity and the Fantappie� transform. This gives rise to a dif-
ferent way of looking at complex mean-value interpolation, discussed in
Section 11. Finally, Section 12 deals with mean-value interpolation from
the point of view of numerical analysis.

2. NOTATION

The space of n-variate complex polynomials of degree k will be denoted
6k(Cn). Given a sequence of points p=( p0 , ..., pk) the notation p$/p
means that p$ is a subsequence of p and p" p$ denotes the complementary
subsequence. The subsequence consisting of the first j+1 terms of p is
denoted p j. The cardinality of the sequence p will be written *p.

For a one-variable function g we write D j g for the j th derivative of g,
and for a multivariate function f and multi-index : we let

D:f =\ �
�z1+

:1

} } } \ �
�zn+

:n

f.
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The partial derivative of a function f in the directions p is denoted
Dp f =Dp0

} } } Dpk
f. Thus, for example, with p( p0 , ..., p6), we have that

Dz& p" p4, z& p2
f =Dz& p5

Dz& p6
Dz& p2

f.

To distinguish between interpolation operators in one and several variables
we use script letters for the latter.

For a domain 0/Cn we let O(0) denote the space of functions
holomorphic on 0.

3. THE REAL SIMPLEX FUNCTIONAL AND
MEAN-VALUE INTERPOLATION IN R

Recall that, in one variable, the Newton divided differences of a function
f at the points p=( p0 , ..., pk) are defined recursively by

[ pi] f =f ( pi),

[ p0 , ..., pj] f =
[ p1 , ..., pj] f &[ p0 , ..., pj&1] f

pj& p0

.

It is well known that the divided differences are symmetric functions in
their arguments and that they have limiting confluent forms as points
(which from the outset are supposed to be distinct) approach each other.
For example, if p=( p0 , ..., p0) where p0 is repeated j+1 times, then
[ p0 , ..., p0] f = f ( j)( p0)�j! .

Now the Lagrange�Hermite polynomial Lp f interpolating a function f at
the points p=( p0 , ..., pk), including derivatives up to the corresponding
order in the case of multiple points, can be written

Lp f (x)=f ( p0)+(x& p0)[ p0 , p1] f +...

+(x& p0)(x& p1) } } } (x& pk&1)[ p0 , ..., pk] f.

Note that this formula contains, as special cases, both the Lagrange poly-
nomial (if the points are distinct) and the Taylor polynomial (if one point
is repeated k+1 times).

Closely linked to the divided differences in one variable, and crucial to
the construction of mean-value interpolation maps, is the following func-
tional, called the Simplex functional.
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Definition 3.1. Let p=( p0 , ..., pj) be a sequence of points in Rn. The
Simplex functional with respect to p is defined by

f [ |
[ p]

f =|
2 j

f ( p0+s1( p1& p0)+ } } } +sj ( pj& p0)) ds1 } } } dsj ,

where 2 j=[(s1 , ..., sj) ; si�0, s1+ } } } +sj�1] is the standard j-simplex.

In R, the Simplex functional is related to the divided differences by the
classical Hermite�Genocchi formula:

[ p0 , ..., pj] f =|
[ p0, ..., pj]

f ( j).

Thus, the Lagrange�Hermite polynomial can also be written in the follow-
ing form, suitable for generalization to several variables:

Lp f (x)=f ( p0)+(x& p0) |
[ p0, p1]

f $

+ } } } +(x& p0)(x& p1) } } } (x& pk&1) |
[ p0, ..., pk]

f (k).

From the Hermite�Genocchi formula it is apparent that a polynomial Q
interpolates f at the points p, including derivatives in the case of multiple
points, if and only if

|
[ p0, ..., pj]

D jQ=|
[ p0, ..., pj]

D jf, j=0, ..., k,

and so the Lagrange�Hermite polynomial is the unique polynomial of
degree k matching these mean-values of the function f.

It is equally natural to interpolate other mean-values. In the general case
we have the following well known result (see e.g. [14]):

Theorem 3.2. Let p=( p0 , ..., pk) be a sequence of points in R and let m
be any integer such that 0�m�k. Then, for any function f # Ck&m(R),
there exists a unique polynomial Lm

p f of degree k&m such that

|
[ p0, ..., pj+m]

D j ( f &Lm
p f )=0, j=0, ..., k&m.
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Moreover, the polynomial Lm
p f is given by

Lm
p f (x)=m! :

k

r=m

:

*p$=r&m
p$/pr&1

`
pj # p$

(x& pj) |
[ p0, ..., pr]

Dr&mf.

Proof. Let D&mf be any function such that Dm(D&mf )= f and let Lp be
the ordinary Lagrange�Hermite interpolation operator at the points p.
Then we claim that the desired polynomial is

Dm(Lp(D&mf )),

i.e., the polynomial obtained by first taking an m th primitive function of f,
then finding the Lagrange�Hermite polynomial of this function at the
points p, and then finally taking the m th derivative of this polynomial. This
procedure clearly gives a well defined polynomial of the desired degree.

It is immediate from the Hermite�Genocchi formula that for
j=0, ..., k&m,

|
[ p0, ..., pj+m]

D jf =[ p0 , ..., pj+m] D&mf,

and

|
[ p0, ..., pj+m]

D j (Dm(Lp(D&mf )))=[ p0 , ..., pj+m] Lp(D&mf ).

Since the Lagrange�Hermite polynomial interpolates function values at the
points in question, these divided differences are equal.

For the uniqueness part, suppose there are two polynomials, Q and R,
meeting the requirements. Then

|
[ p0, ..., pj+m]

D j (Q&R)=0, j=0, ..., k&m.

Taking j=k&m in this formula, we see that the highest order coefficient
of Q and R, i.e., the coefficient of xk&m, must be equal. Having proved this,
we now take j=k&m&1 in the formula and conclude that also the coef-
ficients of xk&m&1 are equal. Continuing this process down to j=0 we see
that Q=R, and the uniqueness is established.

To see that the polynomial can be written in Newton form as claimed,
note first that it is obviously true for m=0, then use the formula
Lm

p f =DmLpD&mf. K
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Remark 3.3. For m=0 we of course recover the ordinary Lagrange�
Hermite polynomial. For m=1 we obtain what has been called an area
matching map, since in this case, if the points are distinct, the interpolation
conditions are equivalent to

|
pj+1

pj

( f &Lm
p f )(x) dx=0, j=0, ..., k&1.

For arbitrary m the interpolation described here is natural and has been
used, for example by de Boor [10], to bound spline interpolation.

Remark 3.4. The interpolation conditions are usually stated slightly
differently. The polynomial Lm

p f is then required to satisfy

|
[ p$]

D j ( f &Lm
p f )=0,

for all subsequences p$/p such that *p$�m+1 and j=*p$&m&1.
We see from the proof above that the conditions given in Theorem 3.2

are sufficient to determine the polynomial (see also Remark 4.5 where the
multivariate case is discussed).

Yet another equivalent way to write the interpolation conditions is to
single out the lowest order conditions, and require that

|
[ p$]

( f &Lm
p f )=0,

for all subsequences p$/p such that *p$=m+1. It is straightforward
calculation to prove that these lowest order conditions actually imply the
higher order conditions involving derivatives. Note that for m=0 this is
just point evaluation. For m=1 this is the formulation used in the preced-
ing remark.

Remark 3.5. A result analogous to Theorem 3.2 holds in C: If p=
( p0 , ..., pk) is a sequence of points from C and m is an integer, 0�m�k,
then for any function f # O(C) there exists a unique polynomial Lm

p f of
degree k&m such that

|
[ p0, ..., pj+m]

D j ( f &Lm
p f )=0, j=0, ..., k&m.

The proof of this is no different from the proof in the real case, it is just
a question of interpreting the entities involved properly.

However, the complex result can be extended. To begin with, it is easy
to see that it is enough for the function f to be holomorphic on the convex
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hull of the points p. But we can go further. If we start by fixing a simply
connected domain 0 containing the points p, then for every function f
holomorphic in 0 there is a unique polynomial Lm

p f with the required
properties (cf. Theorem 7.3).

4. MEAN-VALUE INTERPOLATION IN Rn

In order to generalize mean-value interpolation to several variables, we
need to make precise in what way the one variable operator and the several
variable operator should be connected. This is done in the following defini-
tion, in which we denote the linear form on Rn, induced by scalar product
with � # Rn, by 9, i.e., for x # Rn, 9(x)=�n

j=1 �jxj .

Definition 4.1. Let there to each sequence of points p=( p0 , ..., pk) in
R be associated a continuous linear map Mp : Cs(R) � C(R). A continuous
linear map Mp : Cs(Rn) � C(Rn) is said to be the lift of M to p in Rn if its
satisfies

Mp(g b 9)=(M9( p) g) b 9, \� # Rn, \g # Cs(R).

Remark 4.2. What this amounts to is precisely that the operator Mp is
required to be invariant under affine mappings. Observe, for example, that
this is the relationship between the Taylor operator in one and several
variables.

The mean-value interpolation maps were lifted in the above sense to Rn

by Goodman [14], who proves a weaker version of the following result:

Theorem 4.3. Let p=( p0 , ..., pk) be a sequence of points ( possibly coin-
cident) in Rn and let m be an integer such that 0�m�k. Then for any func-
tion f # Ck&m(Rn) there is a unique polynomial Lm

p f # 6k&m(Rn) such that

|
[ p0, ..., pj+m]

D:( f &Lm
p f )=0

for all j=0, ..., k&m, and all multi-indices : with |:|= j.
Moreover, the polynomial Lm

p f is given by

Lm
p f (x)=m! :

k

r=m

:

*p$=r&m
p$/pr&1

|
[ p0, ..., pr]

Dx& p$ f.

250 LARS FILIPSSON



File: DISTIL 309608 . By:DS . Date:11:07:01 . Time:03:07 LOP8M. V8.0. Page 01:01
Codes: 2665 Signs: 1827 . Length: 45 pic 0 pts, 190 mm

Proof. Note that an operator satisfying the conditions of the theorem
has to be continuous, so it is sufficient to prove the theorem for so called
ridge functions or plane waves. These are functions of the type f =g b 9,
where g is a one variable function and 9 is the linear form induced by
scalar product with � # Rn. For any such function, define a polynomial q
in Rn by

q=(Dm(L9( p)(D&mg))) b 9.

It is a straightforward calculation, using the Hermite�Genocchi formula, to
see that this polynomial indeed satisfies the condition in the theorem, and
that it in fact can be written in Newton form as claimed (see [14] for the
details).

For the uniqueness part, suppose there are two polynomials, Q and R,
meeting the requirements. Then

|
[ p0, ..., pj+m]

D:(Q&R)=0

for all j=0, ..., k&m and all multi-indices : with |:|= j. Taking j=k&m
in this formula we see that for any multi-index : with |:|=k&m, the x:

coefficient of Q and R must be equal (since D:(Q&R) is a constant having
zero integral over a set of positive measure). Having proved this, we know
that Q&R is a polynomial of degree at most k&m&1, and we proceed by
taking j=k&m&1 in the formula and conclude that for any multi-index
; of length k&m&1 the x;-coefficients of Q and R are equal. Continuing
this process down to the case j=0, we get that Q=R as desired. K

Remark 4.4. Several special cases are worth pointing out. For m=0 we
recover the Kergin map. The explicit formula for the interpolating polyno-
mial was found by Micchelli and Milman [19] and [20]. In Newton form,
the Kergin polynomial is

L0
p f (x)=f ( p0)+|

[ p0, p1]
Dx& p0

f

+ } } } +|
[ p0, ..., pk]

Dx& p0
Dx& p1

} } } Dx& pk&1
f.

For m=1 we get a map studied by Cavaretta, Micchelli, and Sharma
[12], the lifting of the area matching map discussed in Remark 3.3.

For m=n&1 we obtain a map introduced by Hakopian [15].
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Remark 4.5. The interpolation conditions are usually stated differently.
Actually, in [14] the polynomial Lm

p f is required to satisfy

|
[ p$]

D:( f &Lm
p f )=0

for all subsequences p$/p such that *p$�m+1 and for all multi-indices
: such that |:|=*p$&m&1.

Goodman points out in [14] that these linear functional are not linearly
independent, but claims that it is very complicated to give a linearly inde-
pendent collection of them explicitly. The conditions of Theorem 4.3 give
an answer to this problem, since their number is equal to the dimension of
the interpolating polynomial space and it is proved above that they in fact
determine the polynomial.

Remark 4.6. Observe that, given a sequence p=( p0 , ..., pk) of points in
Cn, we can identify Cn with R2n and to any entire function f associate the
polynomial Lm

p Re f +iLm
p Im f. This polynomial is holomorphic. By

Theorem 4.3 it is the unique polynomial of degree at most k&m satisfying
the interpolation conditions. In this way mean-value interpolation can be
generalized to Cn. However, using the complex convexity notions intro-
duced in Section 5, we will be able to define complex mean-value interpola-
tion in a much more general setting in Section 7.

5. COMPLEX CONVEXITY

It turns out that the complex analogues of the real mean-value interpola-
tion maps are closely linked with complex convexity. There is a quite
extensive theory of complex notions of convexity, developed over recent
years. Here we just include a brief presentation of some basic concepts and
results of particular importance to us. For a detailed and unified treatment
of this theory, we refer the reader to the work by Andersson, et al. [6],
where also further references can be found.

There are several equivalent characterizations of the convex domains in
Rn. For example, it is well known that an open, connected set 0/Rn is
convex if and only if any one of the following conditions holds:

(1) The intersection of 0 with an arbitrary real line is contractible
(or empty).

(2) The complement of 0 is a union of hyperplanes.

(3) Through every boundary point of 0 passes a hyperplane that
does not intersect 0.
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Obviously, domains in Cn can be convex in this sense, but there are also
other analogous purely complex concepts. These arise when the conditions
above are generalized to the complex setting.

The first of these complex convexity concepts is defined in analogy
with (1).

Definition 5.1. A domain 0/Cn is said to be C-convex if its intersec-
tion with an arbitrary complex line is contractible (or empty).

It is clear that convexity implies C-convexity. However, the converse is
not true. In dimension one this is obvious, since in this case a domain is
C-convex if and only if it is simply connected. But it is, in fact, easy to con-
struct bounded C-convex domains in any dimension that are not convex.
See Examples 2.2.5, 2.2.6, and 2.4.10 of [6]. It is worth pointing out that
the notion of C-convexity can be defined also for compact sets, and in this
case a compact K/Rn/Cn is convex if and only if it is C-convex.

The generalization of condition (2) gives rise to a concept slightly
weaker than C-convexity.

Definition 5.2. A domain 0/Cn is said to be lineally convex if its
complement is a union of complex hyperplanes.

It is proved in Theorem 2.3.7 of [6] that C-convexity implies lineal con-
vexity. The converse does not hold in general, as follows from the fact that
the intersection of C-convex sets need not be C-convex. However, if some
boundary regularity is assumed, the two concepts are equivalent.

Theorem 5.3. Let 0/Cn be a bounded domain with C1 boundary. Then
0 is C-convex if and only if it is lineally convex.

Proof. See Theorem 2.3.7 and Corollary 2.4.5 in [6]. K

It is obvious that any lineally convex open set in Cn is pseudo-convex.
Hence in the complex case there is a scale of notions of convexity, ranging
from pseudo-convexity via lineal convexity and C-convexity to ordinary
convexity.

The following property of the C-convex domains will be of importance
to us.

Theorem 5.4. Let 0/Cn be a C-convex domain. Then 0 is a Runge
domain.

Proof. See Proposition 2.1.9 in [6]. K

We point out that this means that if 0 is a C-convex domain, then any
function holomorphic in 0 can be approximated uniformly on compact
subsets by entire functions, and hence by polynomials.
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The generalization of condition (3) induces yet another complex notion
of convexity.

Definition 5.5. An open set 0/Cn is said to be weakly lineally con-
vex if through every boundary point of 0 of there passes a complex hyper-
plane that does not intersect 0.

We will not use the concept of weak lineal convexity here. We just men-
tion that weakly lineally convex open sets are precisely those sets that can
show up as connected components of lineally convex open sets.

6. THE COMPLEX SIMPLEX FUNCTIONAL

Our aim in this section is to define the complex version of the Simplex
functional of Section 3. This was originally done in [4], and the construc-
tion is as follows.

Let 0/Cn be a C-convex domain and p=( p0 , ..., pk) a sequence of
points in 0. Denote the standard j-simplex in R j by 2 j, its vertices by
v0 , ..., vj , and for each j�k let 0 j be the intersection of 0 with the complex
affine space spanned by p0 , ..., pj . Also, let | j/C j be the preimage of 0 j

under the complex affine mapping C j � Cn taking each vi to pi (using, of
course, the canonical inclusion R j/C j). It turns out that | j is again
C-convex. Finally, introduce singular chains # j : 2 j � | j mapping every
face of 2 j into the complex ( j&1)-plane which it spans. This is possible by
C-convexity, and it follows that each vi is fixed.

Definition 6.1. With the notation introduced above, the complex
Simplex functional is defined to be

f [ |
[ p0, ..., pj]

f =|
# j

f ( p0+*1( p1& p0)

+ } } } +*j ( pj& p0)) d*1 7 } } } 7 d*j .

Observe that the complex Simplex functional depends on the domain 0;
see also Remark 7.5.

We now list some properties of the complex Simplex functional.

Proposition 6.2. For p=( p0 , ..., pk)/0, the complex Simplex functional

|
[ p0, ..., pj]

: O(0) � C
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defined above is independent of the particular choice of chain # j in | j.
Moreover,

(i) it is independent of the order of the points p,

(ii) it is invariant under complex affine mappings, i.e., if 9 : C j � C l is
any such map, then

|
[ p0, ..., pj]

f b 9=|
[9( p0), ..., 9( pj)]

f,

(iii) if f # O(0), then the map

( p0 , ..., pj) [ |
[ p0, ..., pj]

f

is holomorphic.

Proof. For the proof of the independence of the choice of chain, see
Proposition 8 in [2]. Properties (i)��(iii) are quite immediate consequen-
ces of the definition. K

7. COMPLEX MEAN-VALUE INTERPOLATION

We are now in a position to define complex mean-value interpolation
and prove our main results, Theorems 7.3 and 7.6 below.

Definition 7.1. Given a C-convex domain 0/Cn, let f : 0 � C be a
holomorphic function, p=( p0 , ..., pk) a sequence of points in 0, and m an
integer such that 0�m�k. The mean-value interpolating polynomial
Lm

p, 0 f of f with respect to 0 and the points p is

Lm
p, 0 f (z)

=m! :
k

r=m

:

*p$=r&m
p$/pr&1

|
[ pr]

Dz& p$ f

=m! _|[ p0, ..., pm]
f + :

m

j=0
|

[ p0, ..., pm+1]
Dz& pj

f

+ } } } + :
0� j1< j2< } } } < jk&m�k&1

|
[ p0, ..., pk]

Dz& pj1
Dz& pj2

} } } Dz& pjk&m
f& .
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Remark 7.2. If 0 is convex, or if f # O(0) can be continued to a func-
tion holomorphic on the convex hull of the points p, we can let the # j in
the definition of the Simplex functional be identity mappings.

Theorem 7.3. Let 0/Cn be a C-convex domain, p=( p0 , ..., pk) a
sequence of points in 0, and m an integer, 0�m�k. The mean-value inter-
polation operator f [ Lm

p, 0 f is the unique linear operator O(0) � 6k&m(Cn)
satisfying

|
[ p0, ..., pj+m]

D:( f &Lm
p, 0 f )=0, ( V )

for any j=0, ..., k&m and any multi-index : with |:|= j.
Moreover,

(i) it is independent of the ordering of the points pj ,

(ii) it is continuous (in the usual topologies of O(0) and 6k&m(Cn)),

(iii) it is holomorphic as a function of p,

(iv) it is invariant under complex affine mappings, i.e., Lm
p, 0( f b 9)=

(Lm
9( p), 9(0) f ) b 9 for any such mapping 9 : Cn � C l,

(v) it is a projection onto 6k&m(Cn),

(vi) it is invariant under restriction:

p/0$/0 O Lm
p, 0$ f (z)=Lm

p, 0 f (z), \z # 0$,

(vii) it reduces to the Taylor operator, with interpolant of degree
k&m, in case p=( p0 , ..., p0) consists of one point repeated k+1 times,

(viii) it is associative: p/q O Lm
p, 0Lm

q, 0 f =Lm
p, 0 f.

Proof. First we observe (cf. Remark 4.6) that mean-value interpolation
carries over to the complex case in much the same way as ordinary
Lagrange�Hermite interpolation. That is, for f # O(Cn) we can, identifying
Cn with R2n, use the ordinary, real Lm

p operator and put Lm
p f =

Lm
p (Re f )+iLm

p (Im f ). This complex polynomial is holomorphic and it is
precisely the polynomial we get using our Definition 7.1, letting the # j in
the Simplex functionals be identity mappings.

Thus the results of [14] are available to us in the case of entire func-
tions. This will be of great importance throughout this proof.

The properties (ii) and (iii) follow immediately from the definition, and
so do properties (i) and (iv) using Proposition 6.2.

Now 0 is Runge by Theorem 5.4, so O(Cn) is dense in O(0), and ( V )
follows by the continuity of the mean-value interpolation operator and by
the same property of ordinary mean-value interpolation.
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The property (v) will follow immediately, once we have established the
uniqueness assertion.

The invariance under restrictions follows from the uniqueness for poly-
nomials and the fact that O(0)/O(0$) is an injection.

The properties (vii) and (viii) are easily verified from the definition, in
view of ( V ).

It remains to show uniqueness. Suppose that there are two polynomials,
Q and R, meeting the requirements. Then

|
[ p0, ..., pj+m]

D:(Q&R)=0

for any j=0, ..., k&m and any multi-index : with |:|= j. Taking j=k&m
in this formula we obtain that for any multi-index : with |:|=k&m, the
z:-coefficient of Q and R must be equal. Having proved this, we proceed
by taking j=k&m&1 and using the formula to conclude that Q and R
have equal z; coefficient for all multi-indices ; with |;|=k&m&1. Con-
tinuing this process down to the case j=0 we get that Q=R, and the
uniqueness is established. K

Remark 7.4. For m=0 we recover the complex version of Kergin inter-
polation studied by Andersson and Passare in [4] and [5]. This is the
only instance of mean-value interpolation previously studied in the com-
plex case. The interpolating polynomial is given by

L0
p f (z)=f ( p0)+|

[ p0, p1]
Dz& p0

f

+ } } } +|
[ p0, ..., pk]

Dz& p0
Dz& p1

} } } Dz& pk&1
f.

For m=1 we obtain the complex extension of the interpolation operator
studied in the real cases by Cavaretta, et al. [12], the lifting of the area
matching map.

For m=k the interpolating polynomial is a constant, namely

Lk
p, 0 f =k ! |

[ p0, ..., pk]
f.

For m=n&1 we get the complex extension of the interpolation operator
studied in the real case by Hakopian [15].

Remark 7.5. For entire functions it follows from (vi) that the mean-
value interpolating polynomial is independent of the particular choice of
domain 0 containing the points p, and so in this case we may simply write
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Lm
p f. However, in general, if 0 and 0$ are C-convex domains such that

f # O(0 _ 0$) and p/0 & 0$, it is not necessarily true that Lm
p, 0 f (z)=

Lm
p, 0$ f (z), as was shown in [5]. Take for instance k=1, m=0, and

0\={z # C2 ; 1�2<|z1 |<2, } arg z1\
?
2 }>$= ,

with p0=(&1, 0) and p1=(1, 0) and f (z)=z2 �z1 . Then the linear functions
Lm

p, 0+ f (z) and Lm
p, 0& f (z) have different z2-coefficients, as is easily verified

from the fact that in this setting

L0
p, 0\ f (z)= f ( p0)+ :

2

j=1

(zj&( p0) j) |
#\

�f
�zj

( p0+*( p1& p0)) d*,

where #\ are curves from 0 to 1 in the complex plane, such that
p0+*( p1& p0) # 0\ when * # #\.

Since the mean-value interpolating polynomial has independent meaning
in Cn for entire functions, and since O(Cn) is dense in O(0) whenever 0 is
a Runge domain, the linear functional f [ Lm

p f (z) is densely defined for
every such 0 containing p. A natural question which arises in this context
is therefore: When is there a continuous extension to all of O(0)? As we
have seen, C-convexity is a sufficient condition for such an extension to
exist. We now prove that it is also a necessary one.

Theorem 7.6. Let k be a fixed positive integer, and m a fixed integer,
0�m�k. If 0/Cn is a Runge domain such that the linear functionals

O(Cn) % f [ Lm
p f (z)

have continuous extensions to O(0) for all p=( p0 , ..., pk)/0, z # Cn, then
0 is C-convex.

Proof. Since 0 is Runge its intersection with any complex line consists
of simply connected components. Suppose 0 is not C-convex. Then for
some complex line l we have that 0 & l consists of more than one compo-
nent. Choose two points, p0 and p1 , belonging to different components. We
may assume that l=[z2= } } } =zn=0] and that P0=(0, 0, ..., 0) and
p1=(1, 0, ..., 0).

Let us first consider the case when m<k. In view of Cartan's theorem
there are functions f, g2 , ..., gn # O(0) such that

f |0 & l is locally constant, f ( p0)=0, f ( p1)=1,
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and

�m+1f
�zm+1

1

=z2 g2+ } } } +zn gn .

Using the fact that 0 is Runge, we can also find sequences [ f&],
[g2&], ..., [gn&] of entire functions such that f& � f and gj& � gj in O(0).
Next we put

F&=z2

�m+1f&

�zm+1
1

and

G&=z2(z2 g2&+ } } } +zn gn&),

and observe that the sequences [F&] and [G&] converge in O(0) to the
same limit, namely

z2

�m+1f
�zm+1

1

.

Now we wish to calculate the mean-value interpolating polynomials for
F& and G& with respect to the sequence of points p=( p0 , p1 , p0 , ..., p0),
where p0 occurs k times.

To this end, remember that if , is an entire function, when calculating
the coefficients of Lm

p ,(z) we can let the # j in the definition of the Simplex
functional be identity mappings. For example, remembering Definition 7.1,
the zk&m&1

1 z2-coefficient is given by

m ! \k
m+ (k&m) |

1

0
|

1&*k

0
} } } |

1&*k& } } } &*2

0

_
�k&m,

�zk&m&1
1 �z2

( p0+*1( p1& p0)) d*1 } } } d*k .

Now we apply this to the mean-value interpolating polynomials of F&

and G& . The zk&m&1
1 z2-coefficient of Lm

p F& equals

m! \ k
m+ (k&m) |

1

0
|

1&*k

0
} } } |

1&*k& } } } &*2

0

�kf&

�zk
1

(*1 , 0, ..., 0) d*1 } } } d*k

=m ! \ k
m+ (k&m) _f&( p1)& f&( p0)& :

k&1

j=1

1
j !

� jf&

�z j
1

( p0)& .
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When we let & tend to infinity in this expression, f&( p1) � 1 and all the
other terms inside the brackets approach zero. So the whole expression
tends to m !( k

m)(k&m).
On the other hand, the zk&m&1

1 z2-coefficient of Lm
p G& equals

m ! \ k
m+ (k&m) |

1

0
|

1&*k

0
} } } |

1&*k& } } } &*2

0

_
�k&mG&

�zk&m&1
1 �z2

(*1 , 0, ..., 0) d*1 } } } d*k=0.

Thus, [Lm
p F&] and [Lm

p G&] do not have a common limit, and the
theorem is proved in this case.

We now turn to the case when m=k. Observe that in this case

Lm
p f =k ! |

[ p0, ..., pk]
f.

As before we can choose functions f, h2 , ..., hn # O(0) such that

f |0 & l is locally constant, f ( p0)=0, f ( p1)=1,

and

�kf
�zk

1

=z2h2+ } } } +znhn .

Also, we can find sequences [ f&], [h2&], ..., [hn&] of entire functions such
that f& � f and hj& � hj in O(0). Next we construct two sequences of entire
functions by putting

F&=
�kf&

�zk
1

and

H&=(z2h2&+ } } } +znhn&),

and observe that [F&] and [H&] both converge to

�kf
�zk

1

.
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However, it is elementary to see that, with p=( p0 , p1 , p0 , ..., p0) where
p0 occurs k times,

Lm
p F&=k ! _f&( p1)& f&( p0)& :

k&1

j=1

1
j !

� jf&

�z j
1

( p0)& ,

which tends to k ! as & tends to infinity, whereas

Lm
p H&=0,

and so [F&] and [H&] do not have a common limit. K

8. AN INTEGRAL FORMULA FOR THE ERROR

Our aim in the present section is to obtain an integral formula for the
error in complex mean-value interpolation, a formula which we will use in
the subsequent sections to approximate holomorphic functions.

Our formula will be a generalization of the classical formula for the error
in one complex variable Lagrange�Hermite interpolation

f (z)&Lp f (z)=
1

2?i |�0 \`
k

j=0

z& pj

`& pj+
f (`) d`
`&z

.

For the case m=0, i.e., for Kergin interpolation, our error formula will
coincide with the one given in [4] and [7].

To obtain the desired error formula, we use the strategy from [4] and
[7], viz we use a Fantappie� integral formula to represent our function and
then interpolate the kernel, using the continuity and the affine invariance
of the mean-value interpolation operator. First we need two auxiliary one
variable results.

Lemma 8.1. Let n be a positive integer and let g(t)=1�tn. If
p=( p0 , ..., pk) is a sequence of points from C"[0], then

[ p0 , ..., pk] g=
(&1)k

p0 p1 } } } pk
:

|:|=n&1

1
p: ,

where, using ordinary multi-index notation, p:= p:0
0 p:1

1 } } } p:k
k .

Proof. See Lemma 1.10 in [7]. K
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Lemma 8.2. Let g(t)=1�tn and let p=( p0 , ..., pk) be a sequence of
points from C"[0]. If 0�m�min[k, n&1], then

g(t)&Lm
p g(t)= :

m

j=0

:

*p$=k+1& j
p$/p

Cm, n \ `
pr # p$

(t& pr)+
_

(&1)k+1& j

tm& j+1p0 p1 } } } pk
:

n&1&m
|:|+;=

\m& j+;
; + 1

p:t; ,

where Cm, n=m !(n&m&1)!�(n&1)!.

Proof. First we recall the formula introduced in the proof of
Theorem 3.2. That is, with D&mg being any function such that
Dm(D&mg)= g and Lp the ordinary Lagrange operator,

Lm
p g=Dm(Lp(D&mg)).

From this formula we immediately get

g&Lm
p g=Dm(I&Lp) D&mg,

where I is the identity operator. For g(t)=t&n we can take

D&mg(t)=(&1)m (n&m&1)!
(n&1)!

t&n+m.

It is well known that the error in Lagrange interpolation of a function
h at the points p is given by

(I&Lp) h(t)=(t& p0)(t& p1) } } } (t& pk)[ p0 , ..., pk , t] h.

Plugging into this formula our explicitly calculated expression for D&mg,
using Lemma 8.1 to calculate the divided difference, and finally differentiat-
ing m times yields the desired formula. K

Now we can give an integral formula for the error in complex mean-
value interpolation.

Theorem 8.3. Let 0 be a bounded C-convex domain in Cn with C2

boundary and with defining function \, i.e., 0=[\(z)<0]. Let f be a func-
tion holomorphic in 0 and continuous up to the boundary, and let
p=( p0 , ..., pk) be a sequence of points from 0. Then the following formula
holds for 0�m�min[k, n&1]:
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f (z)&Lm
p, 0 f (z)

=
1

(2?i)n |
�0

m !(n&m&1)!
(n&1)!

:
m

j=0

:

*p$=k+1& j
p$/p \

>pr # p$ (\$(`), z& pr)

>k
r=0 (\$(`), `& pr) +

_(&1)k+1& j :

n&1&m
|:|+;=

\m& j+;
; +

_
f (`) �\ 7 (�� �\)n&1

(\$(`), `& p) : (\$(`), `&z) ;+m& j+1.

Proof. Since 0 is C-convex, it is also lineally convex. Hence every com-
plex tangent plane T`=[z # Cn ; (\$(`), `&z)=0] lies entirely outside 0.
Therefore the mapping �0_0 % (`, z) [ (\$(`), `&z) is non-vanishing
and hence it gives rise to a Fantappie� formula (cf. [1])

f (z)=
1

(2?i)n |
�0

f (`) �\ 7 (�� �\)n&1

(\$(`), `&z) n .

The idea is now to interpolate the kernel function z [ (\$, `&z) &n in
order to obtain the desired formula for f &Lm

p, 0 f.
In view of the representation formula above and the continuity of the

mean-value interpolation operator we have the formula

f (z)&Lm
p, 0 f (z)

=
1

(2?i)n |
�0

f (`) \ 1
(\$(`), `&z) n&Lm

p, 0

1
(\$(`), `&z) n+

_�\7 (�� �\)n&1.

Combining this with Lemma 8.2 and the affine invariance of the mean-
value interpolation operator proved in Theorem 7.3(iv) yields the result. K

Remark 8.4. For m=0 we recover the error formula for complex
Kergin interpolation given by Andersson and Passare in [4].

Remark 8.5. In Theorem 8.3 the restriction m�n&1 is imposed. The
reason for this is of a practical nature and evident in the proof of
Lemma 2.8: for m�n logarithms are introduced when taking an m th
primitive function of 1�tn, and there is no longer a convenient explicit for-
mula (like the one in Lemma 8.1) for the divided difference. We point out
that, in spite of the restriction, Theorem 8.3 contains all of the special
instances of mean-value interpolation that have been separately studied in
the multivariate real case, viz. m=0, m=1, and m=n&1.
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9. APPROXIMATION OF ENTIRE FUNCTIONS

As an application of our integral formula for the error in mean-value
interpolation, we now generalize results of Andersson and Passare [4] and
Bloom [7] concerning approximation of entire functions. The following
definition was made in [4].

Definition 9.1. Let & be a norm on Cn and * a positive real number.

(i) Let f be an entire function on Cn. The *-type of f with respect to
& is given by

{&(*)=lim sup
r � �

log M&(r)
r* ,

where M&(r) is the maximum of | f | in the closed ball &(z)�r.

(ii) Let p=( p0 , p1 , ...) be a sequence of points from Cn. The *-den-
sity of p with respect to & is given by

$&(*)=lim inf
r � �

N&(r)
r* ,

where N&(r) is the number of points from p in the closed ball &(z)�r.

The theorem we will give below, about the convergence of the mean-
value interpolating polynomials to entire functions, was stated and proved
in [4] for the case m=0, i.e., for Kergin interpolation. The same type of
result (again for Kergin interpolation) was given already in [7] and [8],
although in a less general setting. We use methods similar to those of [4,
7 and 8] to prove our convergence theorem for general mean-value inter-
polation.

Theorem 9.2. Let f be an entire function on Cn and p=( p0 , p1 , ...) a
discrete sequence of points from Cn with &( pj)�&( pj+1) for all j. Let m be
an integer such that 0�m�n&1.

For any complex-homogenous norm & on Cn and any positive real number
*, let {&(*) be the *-type of f and $&(*) the *-density of p, both measured with
the norm &. If the inequality

{&(*)
$&(*)

<c(*) :=|
1�2

0

t*&1 dt
1&t

holds, then the mean-value interpolating polynomials Lm
pk f of f with respect

to pk=( p0 , ..., pk) converge to f uniformly on compact sets of Cn.
Moreover, the constant c(*) is the largest one with this property.
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Proof. To being with, we assume that & is smooth away from the origin.
We want to investigate the error (for z in some compact set) after inter-
polation at the points pk=( p0 , ..., pk). Put &( pj)=rj and assume that
&(z)�r<rk<R. Then, by Theorem 8.3, this error is

f (z)&Lm
p, 0 f (z)

=
1

(2?i)n |
&(`)=R

Cm, n :
m

j=0

:

*p$=k+1& j
p$/p \

>pr # p$ (&$(`), z& pr)

>k
r=0 (&$(`), `& pr) +

_(&1)k+1& j :

n&1&m
|:|+;=

\m& j+;
; +

_
f (`) �& 7 (�� �&)n&1

(&$(`), `& p) : (&$(`), `&z) ;+m& j+1 ,

where Cm, n=m !(n&m&1)!�(n&1)!.
We now turn to estimating this expression. To this end we first observe

that

Cm, n \m& j+;
; +�1.

Further, as in [4] we can prove that, for each j,

|(&$(`), z& pj) |� 1
2(r+rj)

and

|(&$(`), `& pj) |� 1
2(R&rj).

We also observe that i&n�& 7 (�� �&)n&1 is a positive measure on
[z ; &(z)=R] with mass (?R)n.

Using these facts and making the obvious estimates in the above formula
for the error, much in the same fashion as in [4], we get that

| f (z)&Lm
pk f (z)|

�M&(R)(m+1) \k+n&m
n&m&1+ \

k+1
m + \ `

k

j=m

r+rj

R&rj+ \1&
rk

R+
&n

.
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We will show that there is a sequence R=R(k) such that, as k � �, the
logarithm of the right-hand side tends to &�.

Using the easily verified relation

:
k

j=0

log \ r+rj

R&rj+=(k+1) log \ r+rk

R&rk+&(r+R) |
rk

0

N&(t) dt
(r+t)(R&t)

,

we thus have to examine the following expression:

log M&(R)+log(m+1)+log \\k+1
m + \k+n&m

n&m&1++
+(k+1) log \ r+rk

R&rk+&(r+R) |
rk

0

N&(t) dt
(r+t)(R&t)

+ :
m&1

j=0

log \R&rj

r+rj ++log \1&
rk

R+
&n

.

Now we choose R=R(k)=2r+2rk . Then we get:

(1) The second and seventh terms are of no consequence. Their sum
is bounded by some constant C1 .

(2) The third term can be estimated by C2+C3 log k, for some con-
stants C2 and C3 , since for large k

\k+1
m + \k+n&m

n&m&1+�
(k+1)! (k+n&m)!
(k+1&m)! (k+1)!

�(2k)m (2k)n&m&1�(2k)n&1.

(3) To deal with the fourth term, we note that for x>0 and small,
log(1&x)<&x. Hence

(k+1) log \1&
r

2r+rk+<&(k+1)
r

2r+rk
.

(4) As for the sixth term, it is not greater than C4+C5 log rk , for
some constants C4 and C5 .

(5) The crucial terms are the first and the fifth. This is where the type
and density are used. We have that
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log M&(R)&(r+R) |
rk

0

N&(t) dt
(r+t)(R&t)

=R* \log M&(R)
R* &|

rk

0

(r+R) (N&(t)�R*) dt
(r+t)(R&t) +

=R* \log M&(R)
R* &|

rk�R

0

(r+R) (N&(sR)�(sR)*) s* ds
(r+sR)(1&s) +

� &C6 R*�&C6r*
k ,

for some constant C6>0, since for large enough R the expression inside the
parentheses is �{&(*)&$&(*) c(*).

Bringing it all back home, we end up with

log | f (z)&Lm
pk f (z)|

�C1+C2+C4+C3 log k+C5 log rk&
r(k+1)
2r+rk

&C6r*
k ,

which is easily seen to tend to &� as k � �. The theorem is proved in
the smooth case.

If & is not smooth we proceed as in [4]. For each =>0 we can find a
smooth norm &~ such that (1&=) &<&~ <&. It is then clear that

{&(*)
(1&=)*�{&~ (*),

$&~ (*)�$&(*),

and so we still have that

{&~ (*)
$&~ (*)

<c(*)

if = is chosen small enough. Now the smooth result applies.
That the constant c(*) is the largest one possible is proved in [4] for the

case m=0 and their argument actually goes through for any m such that
0�m�n&1. K

Remark 9.3. The restriction m�n&1, explained in Remark 8.5, can be
dropped when n=1. Indeed, this is a consequence of the formula
Lm

p f =DmLpD&mf and the fact that the theorem holds for Lagrange�
Hermite interpolation.
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10. APPROXIMATION OF HOLOMORPHIC FUNCTIONS

In this section we shall generalize results of Bloom and Calvi concerning
approximation of functions holomorphic in a bounded domain. In [9] they
consider Kergin interpolation at a triangular array of points [ pkj] in a
compact set K in Cn and investigate the problem of finding a domain 0 as
small as possible such that for every f holomorphic in 0 the Kergin poly-
nomial at ( pk0 , pk1 , ..., pkk) exists and converges to f uniformly on K as k
tends to �. They give conditions on the distribution of points and on the
domain 0 which ensures this. As we shall see, their conditions work for
general mean-value interpolation as well.

First we introduce some notation and now we are following [9] quite
closely. For a compact subset K/Cn we write + # M(K) if + is a positive
Borel measure supported by K. For each nonzero linear form A on Cn,
+A denotes the plane measure in M(A(K)) defined by

+A( f )=|
K

( f b A) d+.

The negative of its logarithmic potential is given by

9+(A, u)=+A(log |u& } |)=|
K

log |u&A(z)| d+(z),

which, as a function of u, is subharmonic on C.
We also set

M+(A)=sup [9+(A, u) ; u # A(K)].

Note that since 9+(A, } ) is upper semicontinuous, M+(A) is attained at
some point of A(K).

We further let F+(A) be the plane compact set defined by

F+(A) :=[u # C ; 9+(A, u)�M+(A)].

Finally, given an array of points [ pkj ; j=0, 1, ..., k, k=0, 1, 2, ...] we
write $kj for the Dirac measure at the point pkj . And throughout this sec-
tion pk will denote the k th stage of the array, i.e., pk is the sequence
( pk0 , pk1 , ..., pkk).
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Theorem 10.1. Let 0=[\<0] be a bounded C-convex domain with \
a C2 defining function. Let P=[ pkj ; j=0, ..., k, k=0, 1, 2, ...] be an array
of points in a compact set K/0 such that the sequence of measures

+k :=
1

k+1
:
k

j=0

$kj , k=0, 1, 2, ...,

weakly converges to some measure + in M(K). If 0�m�n&1 and if for
every nonzero linear form A we have that

A(0)#F+(A),

then for every function f holomorphic in a neighborhood of 0�

lim
k � �

sup
K

| f &Lm
pk, 0 f |=0.

Proof. In view of the error formula and the fact that for ` on the
boundary of 0, (\$(`), `&z) does not vanish for z # 0, it is enough to
prove that

lim
k � �

:
m

j=0

:

*p$=k+1& j
p$/pk

\
>pr # p$ (\$(`), z& pr)

>k
r=0 (\$(`), `& pr) +=0.

This poses no problem, since in [9] it is proved that, under the assump-
tions of the theorem, for some constant c<1,

} `
k

j=0

(\$(`), z& pkj)
(\$(`), `& pkj) }�ck+1,

for all z # K, and all ` # �0. K

In [9] there are also examples of so-called extremal arrays for Kergin
interpolation. An array P is extremal for a compact K if P/�K and for
each function f holomorphic in a neighborhood of K the interpolating
polynomials exist at each stage of the array and converge to f. The exam-
ples given in [9] for Kergin interpolation generalize immediately to mean-
value interpolation.

Let K/Cn be a compact circular set of center 0, i.e., let K satisfy the
condition

z # K, * # C, |*|�1 O *z # K.
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A positive Borel measure + on �K is said to be invariant if for every % # R
and every continuous function f on �K

| f (ei%t) d+(t)=| f (t) d+(t).

Now we have the following.

Theorem 10.2. Let K be a circular compact convex set of center 0 in Cn.
If P=[ pkj ; j=0, ..., k, k=0, 1, 2, ...] is an array of points on �K such that

1
k+1

:
k

j=0

$kj *� d+,

where d+ is an invariant probability measure on �K and $kj is the Dirac
measure at the point pkj , then P is an extremal array for mean-value inter-
polation, i.e., for every function f holomorphic in a neighborhood of K,

lim
k � �

sup
K

| f &Lm
pk, 0 f |=0.

Proof. The argument given in [9] for the case m=0 actually goes
through for any m, in view of Theorem 10.1 above. K

Remark 10.3. Note that a C-convex circular set is automatically con-
vex. In [6, Example 2.2.3] this is proved for Reinhard sets, but the proof
is easily adapted to circular sets.

From Theorem 10.2 it is easy to construct explicit examples of extremal
arrays for mean-value interpolation. All examples of extremal arrays for
Kergin interpolation obtained in [9] are valid also for general mean-value
interpolation. Here we just cite the simplest example and refer the reader
to [9] for extremal arrays in the polydisc, for example.

Example 10.4. Take a point a # �K and define an array [ pkj] by

pkj=a exp \ 2i?j
k+1+ , j=0, ..., k.

The corresponding sequence of measures converges to the usual measure on
the circle in �K of center 0 passing through a, and so the array is extremal.
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11. MEAN-VALUE INTERPOLATION
AND THE FANTAPPIE� TRANSFORM

The notion of C-convexity, crucial for complex mean-value interpolation,
is closely connected to the Fantappie� transform. Exploiting this connection
gives rise to a different way of viewing mean-value interpolation. This was
done in [5] for Kergin interpolation and in this section we shall generalize
the results of [5] to mean-value interpolation.

First we need a definition.

Definition 11.1. Let 0 be a subset of Cn such that 0 # 0. The dual
complement of 0 is defined to be

0*=[` # (Cn)* ; 1+(z, `) {0, \z # 0].

Let 0 be a domain in Cn with 0 # 0. If + is an analytic functional on
O(0*), i.e., + # O$(0*), then the Fantappie� transform of + is

F+(z)=+` \ 1
1+(z, `)+ .

Since + is representable by some measure, +~ , this could also be written

F+(z)=|
0*

d+~ (`)
1+(z, `)

.

The Fantappie� transformation is a continuous linear mapping

F : O$(0*) � O(0).

We refer the reader to [2, 5 and 23] for more about the Fantappie� trans-
form. The following theorem is fundamental.

Theorem 11.2. Let 0 be a domain in Cn. Then 0 is C-convex if and only
if F is a topological isomorphism.

Proof. See [2] and [23]. K

One part of this theorem states that if 0 is C-convex, then to each
f # O(0) there corresponds a unique + # O$(0*) such that f =F+. What
this in essence is saying is that every function holomorphic in a C-convex
domain can be thought of as a superposition of one-variable functions.

Using Theorem 11.2 and postulating affine invariance lead to a different
proof of the existence and uniqueness of the complex mean-value interpola-
tion operator. What we do is simply to define the interpolating polynomial
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in terms of the inverse Fantappie� transform of the function. This approach
was applied to Kergin interpolation in [5]. For general mean-value
interpolation, with this approach, Theorem 7.3 can be replaced by the
following.

Theorem 11.3. Let 0/Cn be a C-convex domain, p=( p0 , ..., pk) a
sequence of points in 0, and m an integer, 0�m�k. Then to each function
f # O(0) there is a unique polynomial Lm

p, 0 f of degree at most k&m, such
that it is invariant under complex affine mappings, depends linearly and con-
tinuously on f, and

|
[ p$]

( f &Lm
p, 0 f )=0,

for all subsequences p$/p such that *p$=m+1.
Moreover,

(i) it is independent of the ordering of the points,

(ii) it is holomorphic as a function of p,

(iii) it is a projection onto 6k&m(Cn),

(iv) it is invariant under restriction,

(v) it reduces to a Taylor polynomial if p consists of one point
repeated k+1 times, and

(vi) it is associative: p/q O Lm
p, 0Lm

q, 0 f =Lm
p, 0 f.

Proof. First let us establish the uniqueness. To this end we note that if
f is an entire function of the form f (z)=(g b A)(z), where g is a one-
variable function and A(z)=(z, a) for some point a # Cn, then it is clear
from the postulated affine invariance that

Lm
p, 0 f (z)=Lm

p, 0(g b A)(z)=((Lm
A( p), A(0) g) b A)(z).

Here Lm
A( p), A(0) g is the unique one-variable polynomial of degree k&m

such that

|
[A( p$)]

(g&Lm
A( p), A(0) g)=0,

for all subsequences p$/p such that *p$=m+1 (cf. Remark 3.4). Hence
Lm

p, 0 f is uniquely determined for any entire function f of the above form,
in particular for polynomials of that type. But by polarization every poly-
nomial is a finite sum of such polynomials. Thus, since Lm

p, 0 f depends
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linearly and continuously on f and any C-convex domain is Runge, we
obtain the desired uniqueness.

To establish the existence of Lm
p, 0 f we make a slight change of notation.

First we put h(t)=1�(1+t) and then for any point sequence q=(q1 , ..., qk)
we let H(q1 , ..., qk , t) be the unique polynomial in t of degree at most k&m
such that

|
[q$]

(h&H)=0,

for all subsequences q$/q such that *q$=m+1 (cf. Remark 3.4).
Next, we let + # O$(0*) be the inverse Fantappie� transform of f, i.e.,

f (z)=+` \ 1
1+(z, `)+ .

This representation is possible by Theorem 11.2. Now we define the mean
value interpolating polynomial by putting

Lm
p, 0 f (z)=+(H((p0 , } ) , ..., (pk , } ) , (z, } ) )).

It is clear that this definition gives continuity with respect to f. And
representing + by the measure +~ as above, we see that

|
[ p0, ..., pj+m]

( f &Lm
p, 0 f )

=|
[ p0, ..., pj+m]

|
0* \

1
1+(`, z)

&H((p0 , `) , ..., (z, `) )+ d+~ (`),

which vanishes for j=0, ..., k&m by the choice of H, since changing the
order of integration is justifiable.

Also, for any affine mapping T, we have

((Lm
T( p), T(0) f ) b T )(z)=+(H((T( p0), } ) , ..., (T( pk), } ) , (T(z), } ) ))

=+(H((p0 , T* } ) , ..., (pk , T* } ) , (z, T* } ) )),

where T* is the adjoint mapping. On the other hand, since

( f b T)(z)=+ \ 1
1+(T(z), } )+=+ \ 1

1+(z, T* } )+ ,

it is also clear that

(Lm
p, 0 ( f b T))(z)=+(H((p0 , T* } ), ..., (pk , T* } ) , (z, T* } ) )),
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and so the affine invariance does indeed hold. Now the other properties
follow from Theorem 7.3, but these properties can of course easily be
proved directly. The property (i) is obvious, (ii) is clear from the definition,
(iv) follows as in Theorem 7.3, and for the other properties one observes
that they hold in one variable, and hence, via polarization, for polyno-
mials, which are dense in O(0). K

12. NUMERICAL ANALYSIS APPROACH

In [21] Waldron gives error formulae for mean-value interpolation in
Rn. These formulae are then used to prove uniform estimates. The results
obtained imply that a numerical scheme based on mean-value interpolation
has the highest possible order. This approach can of course also be applied
to complex mean-value interpolation.

In fact, the formulae of [21] are easily seen to hold for entire functions,
and since the entire functions are dense in the holomorphic functions in
any C-convex domain, the extensions are almost immediate.

Theorem 12.1. Let 0 be a C-convex domain and p=( p0 , ..., pk) a
sequence of points in 0. If m is an integer, 0�m�k, then for any function
f # O(0)

f (z)&Lm
p, 0 f (z)=m ! :

m

j=0

:

*p$=k+1& j
p$/p

|
[z, ..., z, p]

Dz& p$ f,

where in [z, ..., z, p] the variable z occurs m& j+1 times.

Proof. This formula is proved in [21] for the real case, and by identify-
ing Cn with R2n and taking the real and imaginary part separately, it also
holds for entire functions. Since 0 is C-convex, O(Cn) is dense in O(0), and
so we can find a sequence f& of entire functions converging to f uniformly
on compact subsets of 0 and the result follows by the continuity of the
mean-value interpolation operator. K

This error formula contains derivatives of orders k+1&m, ..., k+1.
Since the degree of the interpolating polynomial space is k&m, it is, from
the numerical analysis point of view, desirable to have an error formula
that contains only derivatives of order k&m+1. This is done for the real
case in [21], where actually a stronger theorem about the derivatives of
the error is proved [21, Theorem 5.12]. The complex version of that result
is the following.
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Theorem 12.2. Let 0 be a C-convex domain and p=( p0 , ..., pk) a
sequence of points in 0. If m is any integer such that 0�m�k and
|:|=l�k&m, then for any function f # O(0)

D:( f (z)&Lm
p, 0 f (z))

=(m+l )! :
k

j=k&m&l

:

*p$=m+ j+l&k
p$/p j&1

|
[z, ..., z, p j]

Dz& p$Dz& pj
D:f,

where in the expression [z, ..., z, p j], the variable z occurs k+1& j times.

Proof. As in the proof of Theorem 12.1 the result follows by continuity
from the same result in the real case (see [21, Theorem 5.12]). K

Remark 12.3. Taking l=0 in the above formula gives the following for-
mula for the error in complex mean-value interpolation:

f (z)&Lm
p, 0 f (z)=m ! :

k

j=k&m

:

*p$=m+ j&k
p$/pj&1

|
[z, ..., z, p j]

Dz& p$ Dz& pj
f,

where in the expression [z, ..., z, p j] the variable z occurs k+1& j times.
This formula contains only derivatives of f of order k&m+1.

From Theorem 12.1 and Theorem 12.2 one can obtain uniform estimates
for the error. In the real case, this is done in [21]. Following the approach
of [21] we introduce the following notation. Given a sequence of points
p=( p0 , ..., pk), let

hz, p := max
0� j�k

|z& pj |.

To measure the size of the j th derivative of f at z # Cn, we use the seminorm

&D jf &(z) := sup
w1, ..., wj # Cn

|wi |�1

|Dw1
} } } Dwj

f (z)|.

To measure the size of the j th derivative of f over some compact set
K/Cn, we use the seminorm

&| f |&j, K :=sup
z # K

&D jf &(z).

From Theorem 12.1 we obtain the following uniform estimate for the
error.
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Theorem 12.4. Let 0 be a C-convex domain, p=( p0 , ..., pk) a sequence
of points from 0, m an integer such that 0�m�k, and f # O(0). Then for
any compact set K/0 that contains the points p, the following estimate
holds for z # K:

| f (z)&Lm
p, 0 f (z)|� :

m

j=0

C m, j
p, K (hz, p)k& j &| f |&k& j, K ,

for some constants C m, j
p, K .

Proof. The proof is immediate from Theorem 12.1 (cf. Proposition 6.1
in [21]), using the continuity of the mean-value interpolation operator and
the density in O(0) of O(Cn). K

Remark 12.5. The constants C m, j
p, K introduced in this estimate essen-

tially depend on the measure of the deformed simplex over which we
integrate in the formula of Theorem 12.1. If f is an entire function, we can
integrate over the usual simplex, so we can take

C m, j
p, K=

m !
(k+m& j)! \

k+1
j +

in this case. The same is true if 0 is convex or if f can be continued to a
function holomorphic on the convex hull of the points p.

Theorem 12.2 gives rise to the following estimates.

Theorem 12.6. Let 0 be a C-convex domain, p=( p0 , ..., pk) a sequence
of points from 0, m an integer such that 0�m�k, and |:|=l�k&m. Then
for any f # O(0) and any compact set K/0 that contains the points p, the
following estimate holds for z # K:

|D:( f (z)&Lm
p, 0 f (z))|�C m, l

p, K (hz, p)k&m&l &| f |&k&m+1, K ,

for some constant C m, l
p, K .

Proof. The real result is given in [21, Theorem 6.2]. Our result follows
in much the same way, using Theorem 12.2, the continuity of the mean-
value interpolation operator, and the density of O(Cn) in O(0). K

Remark 12.7. Again the constant C m, l
p, K is essentially depending on the

measure of the deformed simplex over which we integrate in the formula of
Theorem 12.2. If f is an entire function we can take

Cm, l
p, K=

1
(k&m&l )!

.
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The same constant applies if 0 is convex or if f can be continued to a func-
tion holomorphic on the convex hull of the points p.

As was pointed out in [21], results such as Theorem 12.2 and
Theorem 12.6 are precisely what numerical analysts want to ensure that
their scheme (e.g., a Lm

p, 0 finite element) has the maximum possible order.
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